Методические рекомендации по суммативному оцениванию Геометрия 8 класс
№ 505, размещено 17-04-2019 5 886 0- Категория: Старшая школа
- Тип файла/Предмет: Геометрия
- Класс/Сынып/Кому: 8 класс
Методические рекомендации по суммативному оцениванию Геометрия 8 класс. Методические рекомендации составлены в помощь учителю при планировании, организации и проведении суммативного оценивания за раздел по предмету «Геометрия» для обучающихся 8 классов. Методические рекомендации подготовлены на основе типовой учебной программы и учебного плана.
Задания для суммативного оценивания за раздел/сквозную тему позволят учителю определить уровень достижения обучающимися целей обучения, запланированных на четверть.
Для проведения суммативного оценивания за раздел/сквозную тему в методических рекомендациях предлагаются задания, критерии оценивания с дескрипторами и баллами. Также в сборнике описаны возможные уровни учебных достижений обучающихся (рубрики). Задания с дескрипторами и баллами носят рекомендательный характер. Методические рекомендации предназначены для учителей, администрации школ, методистов отделов образования, школьных и региональных координаторов по критериальному оцениванию и других заинтересованных лиц. #Методическиерекомендациипосуммативномуоцениванию #Геометрия8класс ##############
Содержание
ЗАДАНИЯ ПО СУММАТИВНОМУ ОЦЕНИВАНИЮ ЗА 1 ЧЕТВЕРТЬ ................................................. 4
ЗАДАНИЯ ПО СУММАТИВНОМУ ОЦЕНИВАНИЮ ЗА 2 ЧЕТВЕРТЬ ................................................. 7
ЗАДАНИЯ ПО СУММАТИВНОМУ ОЦЕНИВАНИЮ ЗА 3 ЧЕТВЕРТЬ ............................................... 10
ЗАДАНИЯ ПО СУММАТИВНОМУ ОЦЕНИВАНИЮ ЗА 4 ЧЕТВЕРТЬ ............................................... 13
ЗАДАНИЯ ПО СУММАТИВНОМУ ОЦЕНИВАНИЮ ЗА 2 ЧЕТВЕРТЬ
Суммативное оценивание за раздел
«Соотношения между сторонами и углами прямоугольного треугольника»
Тема Тригонометрические функции острого угла в прямоугольном
треугольнике. Теорема Пифагора
Основные тригонометрические тождества
Решение прямоугольных треугольников
Цель обучения 8.1.3.2 знать определения синуса, косинуса, тангенса и
котангенса углов через отношения сторон в прямоугольном
треугольнике
8.1.3.3 доказывать и применять теорему Пифагора
8.1.3.24 находить значения sin? , cos?,t? ? и ct? ? по данному
значению одного из них
8.1.3.8 находить стороны и углы прямоугольного треугольника
по двум заданным элементам
Критерий оценивания Обучающийся
• Определяет синус, косинус, тангенс и котангенс углов
через отношения сторон в прямоугольном треугольнике
• Решает задачи с помощью теоремы Пифагора
• Находит значения тригонометрических функций по
данному значению одной из них
• Решает прямоугольный треугольник
Уровень мыслительных
навыков
Применение
Навыки высокого порядка
Время выполнения 25 минут
Задания
1. Дан прямоугольный треугольник МNР с прямым углом Р. Установите соответствия
между отношениями сторон и тригонометрическими функциями острого угла:
а) MN
MP
; b) PN
MP
; c) MN
NP .
1) синус угла М;
2) косинус угла М;
3) синус угла N;
4) косинус угла N;
5) тангенс угла М;
6) тангенс угла N;
7) котангенс угла М;
8) котангенс угла N.
Задания для суммативного оценивания за раздел/сквозную тему позволят учителю определить уровень достижения обучающимися целей обучения, запланированных на четверть.
Для проведения суммативного оценивания за раздел/сквозную тему в методических рекомендациях предлагаются задания, критерии оценивания с дескрипторами и баллами. Также в сборнике описаны возможные уровни учебных достижений обучающихся (рубрики). Задания с дескрипторами и баллами носят рекомендательный характер. Методические рекомендации предназначены для учителей, администрации школ, методистов отделов образования, школьных и региональных координаторов по критериальному оцениванию и других заинтересованных лиц. #Методическиерекомендациипосуммативномуоцениванию #Геометрия8класс ##############
Содержание
ЗАДАНИЯ ПО СУММАТИВНОМУ ОЦЕНИВАНИЮ ЗА 1 ЧЕТВЕРТЬ ................................................. 4
ЗАДАНИЯ ПО СУММАТИВНОМУ ОЦЕНИВАНИЮ ЗА 2 ЧЕТВЕРТЬ ................................................. 7
ЗАДАНИЯ ПО СУММАТИВНОМУ ОЦЕНИВАНИЮ ЗА 3 ЧЕТВЕРТЬ ............................................... 10
ЗАДАНИЯ ПО СУММАТИВНОМУ ОЦЕНИВАНИЮ ЗА 4 ЧЕТВЕРТЬ ............................................... 13
ЗАДАНИЯ ПО СУММАТИВНОМУ ОЦЕНИВАНИЮ ЗА 2 ЧЕТВЕРТЬ
Суммативное оценивание за раздел
«Соотношения между сторонами и углами прямоугольного треугольника»
Тема Тригонометрические функции острого угла в прямоугольном
треугольнике. Теорема Пифагора
Основные тригонометрические тождества
Решение прямоугольных треугольников
Цель обучения 8.1.3.2 знать определения синуса, косинуса, тангенса и
котангенса углов через отношения сторон в прямоугольном
треугольнике
8.1.3.3 доказывать и применять теорему Пифагора
8.1.3.24 находить значения sin? , cos?,t? ? и ct? ? по данному
значению одного из них
8.1.3.8 находить стороны и углы прямоугольного треугольника
по двум заданным элементам
Критерий оценивания Обучающийся
• Определяет синус, косинус, тангенс и котангенс углов
через отношения сторон в прямоугольном треугольнике
• Решает задачи с помощью теоремы Пифагора
• Находит значения тригонометрических функций по
данному значению одной из них
• Решает прямоугольный треугольник
Уровень мыслительных
навыков
Применение
Навыки высокого порядка
Время выполнения 25 минут
Задания
1. Дан прямоугольный треугольник МNР с прямым углом Р. Установите соответствия
между отношениями сторон и тригонометрическими функциями острого угла:
а) MN
MP
; b) PN
MP
; c) MN
NP .
1) синус угла М;
2) косинус угла М;
3) синус угла N;
4) косинус угла N;
5) тангенс угла М;
6) тангенс угла N;
7) котангенс угла М;
8) котангенс угла N.
Скачать Методические рекомендации по суммативному
Для того, что бы получить доступ к файлам, вам необходимо Войти или Зарегистрироваться
Войти на портал с помощью социальных сетей
- 17-04-2019
Вам будет интерестно
Комментарии (0)
Написать
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.
Статистика
Гости2
Роботы8